Reviews for the AMS

Since 1888 the American Mathematical Society promotes mathematical research and its uses, mathematical education and appreciation of mathematics and its connections to everyday life.
I have contributed several Mathematical Reviews in the following subjects:

94A62 Authentication and secret sharing

  1. Enhanced Security Models and a Generic Construction Approach for Linkable Ring Signature
    Liu, Joseph K. & Duncan S.,Internat. J. Found. Comput. Sci. 17(2006), no.6, 1403-1422
  2. Enforcing the security of a time-bound hierarchical key assignment scheme
    De Santis A., Ferrara A.L. & Masucci B., Information Sciences 176(2006), no. 6, 1684-1694
  3. An effcient and secure two-flow zero-knowledge identification protocol
    Stinson D.R. and Wu J., J. Math. Crypt. 1 (2007), 201-220
  4. Security of NMAC and HMAC Based on Non-malleability
    Fischlin, M., Topics in Cryptology – CT-RSA 2008, Lecture Notes in Comput. Sci., 4964, 138–154, (2008)
  5. Beyond Secret Handshakes: Affiliation-Hiding Authenticated Key Exchange
    Jarecki, S., Kim, J. and Tsudik, G.,Topics in Cryptology – CT-RSA 2008, Lecture Notes in Comput. Sci., 4964, 352–369, (2008)
  6. On the Relationships between Notions of Simulation-Based Security
    Küsters, R., Datta, A., Mitchell, J.C. and Ramanathan, A., Journal of Cryptology, Lecture Notes in Comput. Sci., 21, 492–546, (2008)

Quantum Key Distribution

  1. On the Computational Security of Quantum Algorithms for Transformation of Information
    Skobelev, V. G., Cybernetics and Systems Analysis, 46:6, 855–868,(2010)

65M06 Finite Difference Methods

  1. MUSTA-TVD Scheme for Hyperbolic Conservation Laws
    Zahran Y. H., Comptes rendus de l’Academie Bulgare des Sciences 59(2006), no.9, 911-920
  2. Third order TVD scheme for hyperbolic conservation laws
    Zahran Y. H., Bull. Belg. Math. Soc. Simon Stevin 14 (2007),no. 2, 259–275
  3. Finite Differences and Integral Balance Methods Applied to Nutrient Uptake by Roots of Crops
    Dzioba, M.A., Reginato, J. C. and Tarzia, D. A., Int. J. for Computational Methods in Engn. Sci. and Mechanics (2006), 7, 13–19
  4. Grid Stabilization of High-Order One-Sided Differencing I; First-Order hyperbolic Systems
    Hagstrom, T. and Hagstrom, G., Journal of Computational Physics (2007), 223, 316–340
  5. Contructing unconditionally time-stable numerical solutions for mixed
    parabolic problems

    Aloy, R., Casabán, M.C. and Jódar, L., Computer and Mathematics with Applications (2007), 53, 1773–1783
  6. On Space-Time Adaptive Schemes for Numerical Solution of PDEs
    Domingues, M. O., Roussel, O. and Schneider, K., ESAIM: Proceedings (February 2007), 16, 181 – 194.
    available on line
  7. A Stable and Efficient Hybrid Scheme for Viscous Problems in Complex Geometries
    Gong, J. and Nordstrom, J., Journal of Computational Physics 226 (2007),1291-1309
  8. A simple high-resolution advection scheme
    Mingham, C. G. and Causon, D. M., Int. Journal for Numerical Methods in Fluids 56 (2008),469-484
  9. Sharp Interface and Voltage Conservation in the Phase field Method: Application to Cardiac Electrophysiology
    Buzzard, G. T. Jeffrey, J. Fox, J. J. and Siso-Nadal, F., SIAM J. Sci. Comput. 30 No. 2 (2008),837-854
  10. A large-time-stepping scheme for balance equations
    Karlsen, K. H., Mishra S. and Risebro, N. H., J. Eng. Math 60, (2008), 351-363
  11. A multiresolution finite volume scheme for two-dimensional hyperbolic conservation laws
    Tang, L. and Song, S., Journal of Computational and Applied Mathematics 214, (2008), 583-595
  12. Chapter 13 – Space Time Mesh Refinement
    Derveaux, G., Joly, P. and Rodriguez, J., Effective computational methods for
    wave propagation
    pp. 385-424 Chapman & Hall/CRC, Boca Raton, FL, 2008
  13. Chapter 18 – ENO and WENO Schemes
    Ekaterinaris, John A., Effective computational methods for wave propagation pp. 521-592, Chapman & Hall/CRC, Boca Raton, FL, 2008
  14. A singular perturbation of the heat equation with memory
    Branco, J.R., and Ferreira, J.A., Journal of Computational and Applied Mathematics, 218, pp 376–394, 2008
  15. A New Ghost Cell/Level Set Method for Moving Boundary Problems: Application to Tumor Growth
    Macklin. P., and Lowengrub, J.S., Journal of Scientific Computation, 35, pp 266-299, 2008.
  16. Second-Order Slope Limiters for the Simultaneous Linear Advection of (not so) Independent Variables
    Tran, Q. H., Communications in Mathematical Sciences, 6, No. 3, pp 569–593, 2008.
  17. A TVD-MUSTA Scheme for Hyperbolic Conservation Laws
    Zahran Y. H., Bull. Belg. Math. Soc. Simon Stevin, 15, 419-436, (2008)
  18. A Conservative Characteristic Finite Volume Element Method for Solution of the Advection-Diffusion Equation
    Rui, H., Comput. Methods Appl. Mech. Engrg., 197, 3862–3869, (2008)
  19. A time-adaptive finite volume method for the Cahn-Hilliard and Kuramoto-Sivashinsky equations
    Cueto-Felgueroso, L. and Peraire, J., Journal of Computational Physics, 227, 9985–10017, (2008)
  20. A finite volume method for the approximation of highly anisotropic diffusion operators on unstructured meshes.
    Le Potier, C., Finite volumes for complex applications, IV, 401–412, (2009)
  21. A novel Cartesian cut-cell approach.
    Wenneker, I. and Borsboom, M. , Finite volumes for complex applications, IV, 515–524, (2009)
  22. An efficient cell-centered diffusion scheme for quadrilatereal grids
    Basko, M.M., Maruhn, J. and Tauschwitz, A., Journal of Computational Physics, 228, 2175–2193, (2009)
  23. Solution-limited time stepping to enhance reliability in CFD applications.
    Lian, C., Xia, G. and Merkle, C. L., Journal of Computational Physics, 228, 4836–4857, (2009)
  24. Nondissipative and energy-stable high-order finite-difference interface schemes for 2-D patch-refined grids
    Kramer, R.M.J., Pantano, C. and Pullin, D.I., Journal of Computational Physics, 228, 5280–5297, (2009)
  25. A Cartesian Embedded Boundary Method for the Compressible Navier-Stokes Equations
    Kupiainen, M. and Sjögreen, B., Journal of Scientific Computing, 41, 94–117, (2009)
  26. High order conservative differencing for viscous terms and the application of vortex-induced vibration
    Shen, Y., Zha, G. and Chen, X., Journal of Computational Physics, 228, 8283–8300, (2009)
  27. Discontinuous Finite Volume Element Method for Parabolic Problems
    Bi, C. and Geng, J., Numerical Methods for Partial Differential Equations, 26, 367–383, (2010)
  28. An Eulerian Finite-volume scheme for large elastoplastic deformations in solids
    Barton, P. T., Drikakis, D. and Romenski, E. I., International Journal for Numerical Methods in Engineering, 81, 453–484, (2010)
  29. Discretisation of diffusive fluxes on hybrid grids
    Puigt, G., Au.ray, V. and Muller, J. D., Journal of Computational Physics, 229, 1425–1447, (2010)
  30. A Combined Finite Volume-Finite Element Scheme for the Discretization of Strongly Nonlinear Convection-Diffusion-Reaction Problems on Nonmatching Grids
    Eymard, R., Hilhorst, D. And Vohralík, M., Numer. Methods for Partial Differential Equations, 26, 612–646, (2010)
  31. Finite volume schemes for locally constrained conservation laws
    Andreianov, B., Goatin, P. and Seguin, N., Numerische Mathematik, 115, 609–645, (2010)
  32. Equivalence of Semi-Lagrangian and Lagrange-Galerkin Schemes under Constant Advection Speed
    Ferretti, R., Journal of Computational Mathematics, 28:4,461–473, (2010)
  33. Note on helicity balance of the Galerkin method for the 3D NavierStokes equations
    Olshanskii, M. and Rebholz, L.G., Computer Methods in Applied Mechanics and Engineering, 199, 1032–1035, (2010)
  34. Some reduced finite difference schemes based on a proper orthogonal decomposition technique for parabolic equations
    Sun, P., Luo, Z. and Zhou, Y., Applied Numerical Mathematics, 60, 154–164,(2010)
  35. High order conservative differencing for viscous terms and the application of vortex-induced vibration flows
    Shen, Y., Zha, G. and Chen, X., Journal of Computational Physics, 228, 8283–8300, (2009)
  36. Discretisation of diffusive fluxes on hybrid grids
    Puigt, G., Auray, V. and Mller, J. D., Journal of Computational Physics, 229, 1425–1447, (2010)
  37. Note on helicity balance of the Galerkin method for the 3D NavierStokes equations
    Olshanskii, M. and Rebholz, L.G., Computer Methods in Applied Mechanics and Engineering, 199, 1032–1035, (2010)
  38. Discontinuous Finite Volume Element Method for Parabolic Problems
    Bi, C. and Geng, J., Numerical Methods for Partial Differential Equations, 26, 367–383, (2010)
  39. An Eulerian finite-volume scheme for large elasto-plastic deformations in solids
    Barton, P. T., Drikakis, D. and Romenski, E. I., International Journal for Numerical Methods in Engineering, 81, 453–484, (2010)
  40. A Combined Finite Volume-Finite Element Scheme for the Discretization of Strongly Nonlinear Convection
    Diffusion-Reaction Problems on Non-matching Grids

    Eymard, R., Hilhorst, D. And Vohralk, M., Numer. Methods for Partial Differential Equations, 26, 612–646, (2010)
  41. Finite volume schemes for locally constrained conservation laws
    Andreianov, B., Goatin, P. and Seguin, N., Numerische Mathematik, 115, 609–645, (2010)
  42. Equivalence of Semi-Lagrangian and Lagrange-Galerkin Schemes under Constant Advection Speed
    Ferretti, R., Journal of Computational Mathematics, 28:4,461–473, (2010)
  43. Adaptive Timestep Control for Nonstationary Solutions of the Euler Equations.
    Steiner, C., Muller, S. and Noelle, S, SIAM J. Sci. Comput.,32(3), 1617–1651, (2010)
  44. Second-order schemes for conservation laws with discontinuous flux modelling clarifier-thickener units
    Burger, R., Karlsen, K. H., Torres, H. and Towers, J. D., Numerische Mathematik., 116(4), 579–617, (2010)
  45. A Multiresolution Space-Time Adaptive Scheme for the Bidomain Model in Electrocardiology.
    Bendahmane, M., Burger, R. and Ruiz-Baier,R., Numerical Methods for Partial Differential Equations,26(6), 1377-1404, (2010)
  46. Stable Computing with an Enhanced Physics Based Scheme for the 3D Navier-Stokes Equations
    Case, M. A., Ervin, V. J., Linke, A., Rebholz, L. G. and Wilson, N. E., International Journal Of Numerical Analysis And Modeling, 8(1), 118–136, (2011)
  47. An hp certfied reduced basis method for parametrized parabolic partial differential equations.
    Eftang, J. L., Knezevic, D. J. & Patera, A. T., Computer Modelling of Dynamical Systems, 17:4,
    395{422, (2011)
  48. Cubic Spline Meshless Method for Numerical Analysis of the Two-Dimensional Navier-Stokes Equations
    Westover, L. M. & Adeeb, S. M., Int. J. of Numerical Analysis and Modeling, Series B,n 1:2, 172–196, (2010),
  49. Asymptotic Preserving HLL Schemes
    Berthon, C. & Turpault, R., Numerical Methods for Partial Differential Equations, 27:6, 1396–1422, (2011)
  50. A New Stabilized Subgrid Eddy Viscosity Method Based on Pressure Projection and Extrapolated Trapezoidal Rule for the Transient Navier-Stokes Equations
    Feng, M., Bai, Y., He, Y. & Qin, Y. J. of Computational Mathematics, 29:4, 415-440,(2011)
  51. Runge-Kutta Discontinuous Galerkin Method Using WENO-Type Limiters: Three-Dimensional Unstructured Meshes.
    Zhu, J. and Qiu, J., Commun. Comput. Phys., 11:3, 985{1005, (2012)
  52. Numerical study for the parameter estimation of the moisture transfer
    Lee, Yong Hun & Park, Yeon Hee, Journal of Applied Mathematics and Informatics, 29:5-6, 1257–1268, (2011)
  53. A numerical study of the arc-roof and the one-sided roof enclosures based on the entropy generation minimization
    Behrooz M. Ziapour,B. M. and Dehnavi, R.,Computers and Mathematics with Applications,
    64, 1636-1648, (2012)
  54. A Space-Time Discontinuous Galerkin Method for Extended Hydrodynamics
    Suzuki, Y. & van Leer, B., Quaderni di Mathematica, 24, 245–302, (2009)
  55. Coupling of finite volume method and thermal lattice Boltzmann method and its application to natural convection
    Luan, H.B., Xu, H., Chen, L. ,Feng, Y.L., He, Y.L. & Tao, W.Q., Int. J. Numer. Meth. Fluids, 70, 200–221, (2012)